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A study has been made  of the steady motion of a viscous incompressible liquid between two infinite cy l -  

inders taking into account f r ic t ional  heat ing and the dependence 1/g = r  of viscosity on temperature,  

Consider the steady flow of a viscous incompressible liquid between two circular  coax ia l  cylinders of radius r 1 and 
r 2 (r 1 < r2). For s impl ic i ty  it  is assumed that the inner cyl inder  is at rest, while the outer one rotates with angular ve l -  
oci ty  a~ z. (Assuming that the inner cyl inder  also rotates does not affect  the principle,  ) The temperature  of the inner cy l -  
inder is Tz, and that  of the outer T z, The viscosity g of the liquid is assumed to have the following temperature  depend-  
ence:  

1/F = qo (T), (1) 

where ~(T)  is a function defined as continuous and monotonica l ly  increasing on the interval  [a, +*o], a _> 0, corres-  
ponding to a l l  possible values of the temperature.  

It is known from [1] that the equations of mot ion and temperature  distribution have the form 

d (r~g) O, 
dr 

(2) 

FE r ~r \ d r / = 0 ,  
(3) 

where 

From (2) we have 

and from (3) 

~--=-~ r -~r 
(4) 

r ~  = cz, ~ = c l / r  ~, (5) 

d2T 1 dT c~ 1 
dr ~ + - - - - +  = 0 ,  r d r  ~-~-fi 

(6) 

whence, using (1), we obtain 

d2T 1 dT . ~  c~ 
dr 2 + + ~ ~ (T) O; ~ = - - ~  r d r  k E  

(7) 

with boundary conditions 

Trr=r, = T1, Tit=r, = -  (8) 
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From (4) and (5) we have 

(9) 

d [ u__% ~ = c_ L = c~ ~ (T) 
dr ~ r J ,~.r 3 r ~ 

(10) 

Ulr=r,'= O, Ulr=r 2 = t o 2 r 2 ,  ( 1 1 )  

whence 

u = clr ~ ~ [T] dr. (12) 
J r s 

fl. 

In (12) T is assumed to be a known function of r and cl, i . e . ,  T (r, cl) is obtained by solving (7) for conditions 

(8). To determine the constant c 1 we then have the equation 

/'2 

u2 = clr~ f ~ [T (r,c0] dr. (13) 
d , F8 

F1 

Instead of the boundary problem (7), (8), consider the integral equation 

r2 

~ In (r21r 0 + T1, (14) 
rl 

where K(r, g) is a function of the Green operator r ~ r  with boundary conditions T It=r, = 0, r]r=r~ = 0. 

The integral equation obtained is investigated by a method similar to that used in [2] and [3]. 

We state the corresponding results, 

1) lira .q~ (T) = 0 . In this case (14) has a solution for all values of the parameter u. If we denote the maximum 
Y ~  T 

value of the temperature in the flow by Tin, then, as u ~ % T m ~ ~ and, as u - *  0, the solution of (14) tends to the 

solution corresponding to motionless cylinders. For sufficiently small  u the solution is unique. 

2) l i ra  ~(T)  = B, 0 < B  < ~ .  In this case a value u0 exists such that for u < u0 (14) has a solution, while 

for u > u0 there is no solui~ion. Further, there is a value u 1 - u0 such that the equation has a solution for which T m ~ ~ 

as u ~ u 1. If u 1 < u0, then for u I < u < u 0 the equation has at least two solutions. For sufficiently small  u the solution 
is unique and, as u "-* 0, the solution tends to that corresponding to motionless cylinders, 

3) l im  - -  q~ (T) _-- oo In this case, too, there is a cri t ical  value u0; for u < u 0 the equation has a solut ion,  and 
r ~ ,  T 

for u > u0 there is no solution. Then for 0 < u < u0 the equation has at least two solutions. As u o  0, one of these tends 

to the solution corresponding to motionless cylinders, while for the other, as  u ~ 0, T m --~ *~. 

Since ~ = c~/k E, and z - =  cl/r ~, ~ = V~ ' -~ / r  2. Thus, in Case 1 flow regimes are possible with arbitrarily large 

internal  friction stresses, while in Cases 2 and 3 the possible values of the internal friction have upper limits. 

Note that in Cases 2 and 3 the maximum permissible value of the internal  friction stress depends on q, r~ and T 1, 

T2, on the form of function ~(T), and on the physical properties of the liquid, but does not depend on the angular 
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velocity of the cylinder. 

Let us now investigate possible flow regimes as a function of the speed of the outer cylinder. Equation (14) may 
have more than one solution for a given vatue of v, but on each branch the solution is a continuous function of u (and 
consequently of c~). Let us examine the three cases enumerated separately. 

1) In this case. as c 1 increases from 0 to oo T(rlc~) also increases to ~ .  It then follows from (18) that u 2 also 
varies from 0 to oo. Thus, in this case as u 2 --~ rathe internal  friction stress increases without l imit .  It is easy to see that 
for any value of u 2 Eq. (13) m a y b e  solved with respect to c 1. 

2) In this case. as c 1 increases from 0 to a value corresponding to the cri t ical  value u 0 , T m "-~ ~ for one of the 
solutions, so that from (13) we have u 2 --~ oo When c~ - -  0, u 2 --, 0. The following flows are possible: a) as u 2 increases 
from 0 to ~,  the internal  friction stress increases, approaches a maximum,  but does not reach it (then u I = ~0); b) as 

uz increases from 0 to ~ ,  the internal friction stress first grows, attains a maximum value, and then begins to decrease, 

approaching a value other than zero (in this case u 1 < u0). It is clear that (13) may be solved with respect to c 1 for any 

U 2 . 

3) It is not hard to establish that in this case, as u 2 increases from 0 to ~ ,  the internal friction stress increases, 
attains a maximum for some finite value of 112, and then, with further increase, begins to decline,  tending to zero. In 

this case (13) can always be solved with respect to c I. 

It has thus been shown that steady flow exists for any boundary values of temperature and velocity, and for any 

kind of dependence of viscosity on temperature. 

It is interesting to compare the result with that of [2], In [2] Kaganov dealt with the problem of motion of a liquid 

in a two-dimensional  channel  and in an infinite circular cylindrical  tube under the influence of a pressure gradient, a l-  
lowing for frictional heating and variation of viscosity with temperature. 

He established that in Cases 2 and 8 it is impossible to have values of u greater than the cr i t ical  value for steady 

flow regimes. 

Note, f inally,  that the problem investigated has been studied in [4] and [5] for particular forms of the dependence 

of viscosity on temperature. In [4] the function ~(T) takes the form rp (T) = a  T + b , and in [5] the form qo ( T )  = 

Aexp b T In these cases the corresponding equation is integrated in known functions, and the solution may be inves- 

tigated directly. The authors of [4] obtain a result that is a corollary of our Case 2. The case q0(T) ----- Aexp6T is our 

special case 3. The author of [5], however, did not establish the characteristic boundedness of the internal  friction. 

Moreover, discarding the second, physically real solution of (7), he reaches the erroneous conclusion that a steady re- 
gime is impossible if his condition (28) is not satisfied. It is easy to show that condition (28) of [5] does not make sense 

physically. Actually, this condition has the form 

T . , - - T I < 2 1 n  r2 
r 1 

and, since it does not contain the hydrodynamic parameters of motion, cannot be used to obtain a criterion of impossi- 
bil i ty of steady flow. 
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